PAUL SCHERRER INSTITUT

Sven Reiche :: Paul Scherrer Institut

Schemes for Large Bandwidth Pulses

NOCE 2017 - Arcidosso

- Manipulating the energy chirp of electron bunch
 - Over-Compression
 - Wakes
 - Laser Shaping
 - -LSC
- Using a Transverse Gradient Undulator (TGU)
- Spectral Broadening due to short pulses

• FEL Resonance Condition:

... while providing FEL like power levels

(excluding incoherent undulator radiation, large variation in undulator field etc.)

• If bunch length is longer than cooperation length, a correlated energy chirp in electron beam is transferred into a chirp in FEL pulse

• To amplify till saturation, the local SASE spike is not allowed to slip onto electrons outside of the resonance condition:

 $\frac{\Delta E}{E} \ll \rho \cdot M_{spikes} \qquad \text{(For SwissFEL @ 1 Angstrom and 100 spikes: 4\%)}$

• This can be overcome if undulator is tapered to preserve resonance condition

Generating the Chirp

- In general any kind of time-dependent change in electron acceleration can be used:
 - Off-crest acceleration
 - Wakefields
 - Longitudinal Space Charge
- Very effective is the method to overcompress the beam to add the chrip for compression with the wakes, normally removing it.

LCLS Large Bandwidth Mode

• Simulations @ 1nC: [P. Emma, LCLS-TN-00-6, 2000]

Before Undulator

RMS value of 0.55% correspond to Peak-peak value of 1.9%.

No FEL simulation done

30

• Experiment @ 250 pC:

[J. Welch et al, "FEL Spectral Measurements at LCLS. FEL2011]

• Apply an iterative forward/backtracking to optimize beam profile [A. Saa Hernandez et al, PHAB 19, 090702 (2016)]

Chirp Induced by Space Charge

[S. Serkez et al, DESY 13-109]

- Alternative method is nearly full compression at last bunch compressor and let the space charge naturally induced a chirp.
- Promising for FELs with low wakefields (e.g. European FEL)

Note that still half of the chirp comes from wakefields in SASE1 undulator which proceeds the used FEL beamline SASE 3

Transverse Gradient Undulators

[E. Prat et al, JSR, 23 (2016) 874]

• Inject a tilted beam into a TGU with no external focusing.

- Spatial Temporal Chirp, which direction can be inverted
- Reduced efficiency due to lack of focusing is acceptable.
- Soft X-ray FEL beamline Athos @ SwissFEL using new type of undulator

• SwissFEL soft X-ray FEL undulator uses novel design to control gradient of TGU

• Alternatively a strongly misaligned normal undulator can be used

$$K(x) = K \cdot \left[1 + \frac{1}{2}k_u^2 \left(x - \Delta x\right)^2\right]$$

[Q. Jia and H. Li, RAB 20 (2017) 020707]

Mode-locked FELs

[E. Kur et al, New Journal of Physics 13 (2011) 063012]

• Use the short undulator in mode-lock configuration to generate pulse train of short pulses

• Requirements are short modules, with a length much shorter than gain length

Mode-Locked FELs

- Example for 6 nm laser
- Relative spectral width:
 - SASE FEL : ρ Parameter
 - Mode-locked: 1/N_u

Simulations show an rms width of 2.6% for a module length of Nu=24 periods, twice as much for half the length.

Results show with ideal delaying chicane with no dispersion

	Expected Bandwidth	Hardware	Chirp	Challenge	Flexibility
Electron Chirp	2-4 % at max energy	Eventually Wakefield source (e.g. dechirper)	positive	Overcompression	Little
TGU	Up to 20%	Apple-type undulator	Positive and negative	Tilt Generation	Full
Mode-locking	Up to 5%	Specific configuration of FEL, modulation laser	No chirp	Realization of mode-locking	None